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A linear analysis of rotating stratified flow past a circular cylinder on anf-plane is 
made for moderate and strong stratification, i.e. for US = O(B) and US = O(1) 
respectively. E is the Ekman number and US is the product of the Prandtl number 
and the inverse rotational Froude number. The most striking result is that, for 
oncoming flows that are of one sign and possess vertical shear, reversed-flow regions 
can exist next to the cylinder. Depending on the degree of stratification, these 
backflow regions can occupy the inner part of the vertical boundary layer or can 
extend horizontally across distances comparable to the horizontal scale of the 
cylinder. 

1. Introduction 
Boyer (1970) pioneered the study of flow separation in rotating systems by carrying 

out a series of experiments describing slightly viscous homogeneous flow past a 
circular cylinder in a rapidly rotating system. The cylinder extended throughout the 
depth of the fluid, its axis parallel to the constant rotation vector. The experiments 
showed that in the limit of zero Rossby number the flow was fully attached. However, 
for small but finite Rossby numbers separation occurred. The experiments showed 
also the emergence of asymmetry of the flow pattern with respect to the upstream 
flow direction, and it became more pronounced for successively larger Rossby 
numbers. 

Using the quasi-geostrophic approximation, Walker & Stewartson (1 972) derived 
a criterion for flow separation which is expressed as a ratio of the Rossby number 
to the square root of the Ekman number. However, their analysis could not explain 
the observed asymmetry. Merkine & Solan (1979) reconsidered the problem and 
suggested a mechanism for the asymmetry, which is based on incorporating higher- 
order Rossby-number effects. Their criterion for separation was identical with that 
of Walker & Stewartson. 

Additional and more refined experiments were conducted by Boyer & Davies 
(1982), who emphasized beta-plane effects. Their results generally conformed with 
the earlier predictions of Merkine (1980) that beta inhibits separation for prograde 
flows. 

The dynamics of the atmosphere and oceans is stratified and it is influenced by 
baroclinic effects. Hence it is important to understand the dynamics of vertical 
rotating stratified boundary layers. The simplest way of incorporating stratification 
into the dynamics is by considering the physically realizable two-layer model, an 
approach recently taken by Brevdo & Merkine (1985). The dynamics of each layer 
is fundamentally homogeneous, but the two layers are coupled through the frictional 
interface. This coupling is sufficient for altering qualitatively the response of the 
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system. The Taylor-Proudman constraint is broken by the stratification, which is 
concentrated at  the interface, and this permits flows with vertical shear. Brevdo & 
Merkine found out that for flows a t  infinity that are strongly sheared vertically and 
of one sign it is possible to obtain fully attached boundary layers which possess an 
inner region of flow reversal. No numerical difficulties were encountered while 
integrating the nonlinear equations across O( 1 ) streamwise distances through these 
flow-reversal regions. This surprising result pivots on the linear dynamics of slightly 
viscous rotating systems, which generally remains uniformly valid in the presence 
of small ncnlinear effects. Thus, if the linear problem supports flow-reversal regions, 
this property cannot be fundamentally altered when small nonlinearity is added, since 
the dynamics is that of regular perturbation. Brevdo & Merkine showed that when 
the degree of nonlinearity exceeds a certain non-zero threshold value the vertical 
boundary layer detaches from the wall, i.e. true separation occurs. However, this 
result is not directly related to the occurrence of flow-reversal regions within fully 
attached boundary layers. 

It is of considerable interest to determine whether flow-reversal regions can exist 
in rotating systems that are continuously stratified. To this end it suffices to consider 
the linear dynamics which is investigated here. Barcilon & Pedlosky (1967a,b, 
hereinafter referred to as A and B respectively) investigated thoroughly the linear 
dynamics of contained rotating stratified fluids and showed how the vertical velocity 
and consequently the resulting dynamics depend crucially on the relation between 
the Ekman number E and the stratification parameter US. The exact definition of 
these parameters will be given shortly. as, however, is the product of the Prandtl 
number and the inverse rotational Froude number. Their findings show that when 
as < l8 the fluid behaves as if it  were essentially homogeneous, while for US @ ,?$ it 
is dominated by stratification. In  the intermediate region B.4 US 6 I$ the dynamics 
is of hybrid nature, exhibiting features of both homogeneous and stratified fluids. The 
strongly stratified region was investigated in A and the intermediate region in B. In 
the intermediate region standard Ekman layers are present along the horizontal 
boundaries, and the vertical boundary layer splits into three layers which are 
respectively the innermost buoyancy layer of thickness (as)-! I&, the intermediate 
hydrostatic baroclinic layer of thickness (crS)i and the outer homogeneous layer of 
thickness I&. In the strongly stratified limit the Ekman layers no longer control the 
interior dynamics, and in fact they are frequently absent. Along the vertical walls 
only the buoyancy layer remains, whose thickness is B. 

The present investigation, although guided heavily by A and B, differs from these 
two important works in one major point, namely that exterior flows are considered. 
This leaves us with the additional degree of freedom of choosing the flow at infinity 
and hence exerting external control on the structure of the flow next to the vertical 
wall, which in our case is a right-circular cylinder. Two parameter regimes are 
considered: a8 = O(1) and aS = O(,?$). In the second regime the vertical velocity 
induced by the stratification is comparable to that induced by the Ekman suction, 
and the hydrostatic baroclinic vertical layer merges with the homogeneous layer. 
The thickness of the buoyancy layer becomes I$. In  other words, the vertical 
boundary layer consists now of only two sublayers. The triple structure obtained in 
B is a consequence of the weaker stratification considered there, since US was 
restricted to the range ,@ .4 US .4 I&. 
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2. Formulation 
Consider an incompressible viscous heat-conducting fluid confined between two 

horizontal planes a distance D apart. A horizontally uniform vertically sheared flow 
with characteristic velocity V is forced past a vertical circular cylinder of radius roD 
which extends throughout the depth of the fluid. The whole system rotates with a 
constant angular velocity 52, its axis of rotation perpendicular to the horizontal 
planes. The appropriate linearized non-dimensional equations ( V  and D are the 
reference scales) for steady motions as given in B are 

& X U  = -VP+T&++EV~U,  (2.1) 

w . u = o ,  (2.2) 

CTSW = i E  V2T. (2.3) 

The vertical component of the velocity vector u is w = k u .  The dynamic pressure 
and temperature are denoted by p and T respectively. The ratio of the kinematic 
viscosity v to the heat conductivity k is defined by the Prandtl number a. E = v/52D2 
is the Ekman number and S = a ATg/4a2D is the rotational stratification parameter. 
g is the acceleration of free fall and a is the coefficient of thermal expansion. A T  2 0 
is the basic temperature difference of the equilibrium state, and it is assumed that 
a AT 4 1. Our analysis assumes that E 4 1, and, as stated in 5 1, two cases are of 
interest: CTS = O(B) and us = O( 1). Nonlinear effects are constrained to be small by 
requiring that E = o(&) in the former case and E = o(E) in the latter case, where 
E =  V/252D is the Rossby number based on the characteristic velocity at large 
distances from the cylinder. In terms of the Reynolds number Re, the linear analysis 
is restricted to Re = o(l/&) for US = O(Ef )  and Re = o(1) for aS = O(1). The latter 
case is not directly applicable to geophysical applications since the Reynolds number 
is too small. However, such flows cannot be characterized as the extension of creeping 
Stokes flows to rotating stratified systems since diffusive effects are important only 
in boundary layers, and the interior flow, although controlled by diffusion, is inviscid 
to O(E) .  

Equations (2.1)-(2.3) are supplemented by the boundary conditions 

u = O ,  A*VT=O onz=O,landr=r , , ,  (2.4) 

and p = - [ a + b ( z - i ) ] y  asr+oo, (2.5) 

where r is the polar radial coordinate. z = 0 , l  and r = ro denote the lower horizontal 
boundary, the upper horizontal boundary and the radius of the cylinder respectively. 
Equation (2.5) implies that at large distances from the cylinder the interior motion is 
in exact geostrophic balance and it is directed in the s-direction (unit vector 0. The 
condition of no heat flux through the rigid boundaries simplifies the analysis (B) and 
allows direct comparison with laboratory conditions, which utilize salinity rather 
than temperature as the stratification agent. 

3. The case of moderate stratification, US = O ( B )  

vertical layers at r = ro, the following expansion of the field variables can be used: 
In  the interior, i.e. away from the horizontal Ekman layers at  z = 0 , l  and the 

q = qo+&q'+ ..., w = Bw0+ ..., p = po+&pl+ ..., T = TO+BP+ ..., 
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where q denotes the horizontal part of the velocity vector. Since the interior flow is 
in geostrophic balance to O(E) ,  it follows from (2.1)-(2.2) that 

implying that the leading-order motion is governed by the equation 

It was shown in B that even for us as large as O( 1) the dynamics of the Ekman layers 
is not affected by stratification. Consequently the Ekman-suction condition 
w = a( - 1)',@5, z = 0,1,  (6 is the vertical component of the relative vorticity) for 
homogeneous fluids can be used. When the vertical velocity at the edge of the Ekman 
layer is expressed in terms of the Laplacian of the temperature, we find that 

a 
-Vzp; = V t p o  on z = 0, 
ClS 
B 
- vzp;  = - v2 
us  

o n z =  1, 
(3.3) 

where V: is the horizontal part of the Laplacian. From (2.3) it  follows that the 
correction to the temperature field induced by the Ekman layer is O(E).  This, in 
conjunction with the no-heat-flux wall condition, implies that 

p;, = 0 on z = 0 , l .  (3.4) 

Equation (3.2) can be integrated twice with respect to z to yield 

V2p0 = F(z ,  y) +zG(x ,  y). 

When this expression is substituted into (3.3) and use is made of (3.4) we find that 
the arbitrary functions of integration F and G must vanish, implying that the 
equation for the leading-order interior motion is 

v2po = 0. (3.5) 

The circulation included in the general solution of (3.5) is removed by applying 
the argument of Walker & Stewartson (1972). An O( 1) steady circulation would lead 
to an axisymmetric unidirectional radial mass flux of O(B) in the Ekman layers. But 
such a radial mass flux can only be maintained by a distribution of sources or sinks 
along the cylinder, and this is not the case at hand. It follows that the solution for 
the leading-order interior motion is 

where 8 is the polar angle measured from the positive 2-direction. It follows from 
(3.6) that the leading-order interior motion is irrotational on each horizontal plane. 
The solution (3.6) does not satisfy the conditions of no slip and no heat flux at  r = ro, 
and a boundary-layer correction is required. This boundary layer consists of two 
sublayers, the thickest of which is of O(Ef) .  The Id layer is necessary for imposing 
the wall conditions on the leading-order horizontal motion and temperature field. The 
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inner ,?$ layer is required for applying the no-slip condition to the leading-order 
vertical velocity. 

The scaling of the variables in the B layer is similar to the barotropic scaling of 
Walker t Stewartson (1972), augmented by a temperature field which enters the 
leading-order balance. Consequently we write 

(3.7) 1 ru = (r--&/Et, 
v = a, u = Eta, w = Etd, 

p = E@, T = BP, 
where all the tilde variables are 0(1) as E+O. u and v are the radial and azimuthal 
velocity components respectively. Equations (3.7) are now substituted into 
(2.1)-(2.3), and it follows that the motion is in geostrophic and hydrostatic balance 
to O(Et ) ,  i.e. 

(3.8) 
- 1  

TO 
u = -- $0, " p p ,  5?=pz. 

2uS *L 

Wpp + v"2zlp = 0, p = -&$. 

The equations for the vertical component of vorticity and the temperature field 
become 

(3.9) 
E: 

d = - tZz+gppp = 0, 

from which the following equation for the azimuthal velocity emerges : 

(3.10) 
us 

The Ekman-suction condition still applies, and we find that 

/3v"p-v"zp = 0 on z = 0, 

pGp+CZp = 0 on z = 1. 

The azimuthal velocity is subjected also to the wall condition 

(3.11) 

v " = O  onp=O (3.12) 

and the matching condition 

v " =  -2[a+b(z-4)] sine a s p u r n .  (3.13) 

Thus the solution for v" is uniquely specified by (3.10)-(3.13). We note that (3.12) and 
the thermal-wind relation GZ = Fp, which follows from (3.8), guarantee that to leading 
order the no-heat-flux condition is satisfied at the vertical wall. 

The solution for v" can be written as 

m 

where the f,, are the solutions of the eigenvalue problem 

I fnzz+B%fn = 0, 

pfn-fnZ = 0 on z = 0, 

/3fn+fnz = 0 on z = 1. 

(3.14) 
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The non-trivial solutions of (3.14) are given by 

where 

f, = sin z + $,I, (3.15) 

The eigenvalues A, are the solutions of the transcendental equation 

(3.16) 

(3.17) 

The matching condition (3.13) determines F(8, z ) ,  and the wall condition determines 
the C,. The final expression for v" is 

I n-i 1 
03 

V' = -2  a+b(z-+)-2 E an e-A# sin(x,z++,)} sin0 

a, = 

2 ( a - @ ) X n  sin($n++xx,) sin(!ixn)+2b cos($n+hn) s in(k~n)-b~n COS($,+X,)> 

Xn[Xn-COs (Xn + W n )  sin ( ~ n ) l  

X n  = @An* 

(3.18) 

The structure of the solution depends crucially on the distribution of the eigen- 
values A,. For any given stratification, i.e. when #? is fixed, A, - (n- 1) n/@ as n+ 00. 

The width of the layer, which is determined by the lowest eigenvalue, decreases with 
8. For example, A, x 1.403,1.307 and 0.831 for /? = 0.1, 1 and 10 respectively. When 
B + O ,  A, - d and A, - (n- l)n/@, n > 1.  Thus, when the stratification is small but 
not zero, i.e. #? Q 1, the lowest eigenfunction is almost depth-independent (see (3.15) 
and (3.16)) and the width of layer equals that of the barotropic a layer. However, 
since the interior flow is vertically sheared, the conditions of no slip and no heat 
flux cannot be satisfied by the barotropic part of the motion and all of the baro- 
clinic eigenfunctions must be included their dynamics is felt within an inner region 
O($/n) .  As /3 increases, the baroclinic effects penetrate inward from the wall and the 
vertical boundary layer widens appreciably. A, - n/$ as #?+ 00, and, for any fixed n, 
f, - sin (nxz) as #?+ 00. When US = O( 1) the vertical boundary layer fills the entire 
interior. These conclusions, which are of a general nature, can also be extracted from 
A and B. Nevertheless, the present study differs in one major aspect. Barcilon & 
Pedlosky treated 'contained flows with interior vertical shear which is always 
proportional to as. We consider exterior flows with vertical shear which is determined 
by the flow at infinity independently of US for non-zero US. Consequently we can 
have an O(1) vertical shear in the interior although as = O(I@). 

We proceed now to present particular solutions which reveal some peculiar 
dynamics1 effects. We consider first the case of interior flow that is depth-independent, 
i.e., a = 1, b = 0. For non-zero stratification the structure of the vertical boundary 
layer must be depth-dependent since none of the eigenfunctions is pure barotropic. 
However, as #? decreases the lowest eigenfunction approaches its barotropic structure 
and the importance of the higher eigenfunctions weakens; their effect is felt closer 
to the wall. In  this limiting case the eigenfunctions approach the structure given in 
A for aS Q ,?&. This behaviour is depicted in figure 1, which shows the radial structure 
of the azimuthal velocity v" at z = 0 and 0.5 for the two cases #? = 0.1 and 10. For 
this interior-velocity profile the horizontal motion is symmetric about z = 0.5. We 
observe that in the case of #? = 0.1 the structure is almost barotropic. However, when 
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FIGURE 1. The radial structhre (the sin 0 term extracted) bf the boundary-layer azimuthal velocity 
corresponding to an oncoming flow possessing no vertical shear, i.e. a = 1, b = 0. B is negative when 
it isin the same overall direction as the oncoming flow, which is directed along the positive s-direction. 
/3 = ax/Et. 

p = 10 the azimuthal velocity exhibits strong vertical variation and weaker radial 
decay, in agreement with the earlier discussion. We observe also that the veldGity 
gradient at the wall is @ater at z = 0 than at z = 0.5. For fixed p and large n, 
xn - (n - l )n+2 /? / (n - l )x ,  9, -@-p/(n-l)n and consequentlya, = O(l /ne) .  It 
follows that the corresponding coefficients in the series for the wall sheat stress are 
O( l / n ) .  Inspection shows that the series for the wall shear stress at  z = 0, 1 diverges 
like the harmonic series Z( l / n ) ,  which implies logarithmic singularity in the wall 
shear stress at  z = 0 , l  for the interior velocity profiles that are height-independent 
or depend linearly on z. The wall shear stress correapondirig to figure 1 is depicted in 
figure 2 (a) .  It is weaker for stronger StratificatZon, since the boundary layer widens, 
and it becomes more uniform as the stratification weakens. 

When the interior horizontal motion is vertically sheared the baroclinic eigev- 
functions are important even when the stratification is weak. Figuie 3 depicts the 
azimuthal velocity profile id the boundary layer for an interior velocity profile that 
vanishes at z = 0 and possesses a unit vertical shear at infinity, i.e. a = 4, b = 1. For 
this profile the horizontal motion is no longer symmetric about z = 0.5. Similarly to 
figure 1, we observe the widening of the vertical layer with /3, but the most striking 
feature is the appeartyice of an inhnse reversed-flow region in the immediate vicinity 
of the wall in the lower part of the cylinder. When /3 decreases, the intensity of the 
reverse flow region irpeases, with a maximum that is closer to the wal1.t The vertical 
distriljution of tb;e ball shear stress depicted in figure 2 ( b )  reveals that when the 
stratification is large, in the sense that /3 %- 1 ,  the backflow region is confined to the 
vicinity of the lower horizontal surface. However, it penetrates into higher vertical 
levels as p decreases. 

t This trend cannot be continued to the limit B = 0 since the analysis is ba&d on the premise 
that stratification always exists. Otherwise, the Taylor-Proudman theorem would not allow vertical 
shear at infinity. Thus when /3-0 the shear at infinity must be relaxed to 0(/3) and an analysis 
similar to A that assumes triple structure for the boundary layer must be performed. 

17 F L M  157 
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FIQURE 2. The vertical distribution of the wall shear stress (the sin 8 term extracted). Positive shear 
indicates backflow next to the cylinder. (a) The oncoming flow possesses no vertical shear, i.e. a = 1, 
b = 0. (b) The oncoming flow vanishes on z = 0 and possess a unit vertical shear, i.e. a = 4, b = 1. 
$ = us/@. 
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FIQURE 3. The radial structure (the sin 8 term extracted) of the boundary-layer azimuthal velocity 
corresponding to an oncoming flow that vanishes on z = 0 and possesses unit vertical shear, i.e. 
a = +, b = 1. Positive v' corresponds to flow reversal. p = US/&. 
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The existence of a region next to the wall possessing azimuthal velocity in opposite 
direction to its asymptotic value just outside the boundary layer is strange, since 
unlike the Ekman layers the vertical layers are controlled by the interior flow rather 
than controlling it. Physical understanding of the flow-reversal phenomenon and, as 
a matter of fact, of the entire vertical structure of the E f  layer is not difficult, however. 
The interior flow (3.6) impresses at the wall r = ro a temperature gradient given by 
-2b sin8. For b > 0, as in our example, and (say) for 0 < 0 < x this gradient is 
negative. The wall no-heat-flux condition requires that the boundary layer responds 
by generating a wall temperature gradient of equal magnitude but of opposite sign. 
The Ekman-suction condition (3.1 1) for the boundary-layer correction, referring now 
only to the exponentially decaying part of the boundary-layer solution, can be 
written, using the thermal-wind relation ijz = pfi, as Pij = & pfl, where + and - refer 
to z = 0 and 1 respectively. We see now that the generation of a positive temperature 
gradient by the boundary-layer correction must be accompanied by an azimuthal- 
velocity correction that is positive a t  z = 0 and negative at z = 1. Since an O(1) 
temperature gradient is induced by the boundary-layer correction the Ekman-suction 
condition implies that the azimuthal velocity correction intensifies inversely pro- 
portionally to /3. In the example of figure 3 the interior flow vanishes at z = 0, leaving 
the vicinity of this region to be dominated by the counterflow effect. The degree of 
vertical penetration of the flow-reversal regions can be best appreciated from the 
vertical distribution ofthe wall shear stress depicted in figure 2 (b). When stratification 
decreases, the baroclinic part of the E f  layer narrows, the shear increases, the 
azimuthal velocity correction increases and the vertical penetration increases. 
Alternatively, strong stratification inhibits the vertical velocity, rendering the 
Ekman-suction condition less effective in controlling the dynamics. 

Since the linear analysis is uniformly valid, it  is expected that the existence of a 
counterflow region next to the wall should not be altered when small nonlinearity 
is added. Consequently it is important to demonstrate that our analysis is correct 
to leading order. The E f  layer is necessary for imposing the no-slip and no-heat-flux 
wall conditions on the leading-order horizontal motion and temperature field. Thus 
it is still necessary to impose the no-slip wall condition on the vertical velocity. To 
this end it is necessary to have an inner boundary layer, the buoyancy layer of B, 
which in our case is O ( B )  wide with the following scaling for the field variables: 
u = O(,@), w = @A$), w = O(Ef ) ,  p = O ( B )  and T = O ( B ) .  This implies that the wall 
shear stress induced by the buoyancy layer is O( 1) and hence negligibly small in an 
asymptotic sense compared with the O(m) wall shear stress induced by the E f  layer. 
In  view of the dynamic insignificance of the buoyancy layer to the wall shear stress 
and to the phenomenon of flow reversal, we shall not pursue it any further. We 
proceed now to discuss the case of strong stratification. 

4. The case of strong stratification, as = O(1) 
It is shown in A that when as = O(1) the interior vertical velocity is O(E) .  

Following the analysis presented there, we obtain, using our notation, the geostrophic- 
hydrostatic balance 

for the leading-order interior motion, which is governed by 

v2 ( .  V Z + S $ p  l a . >  po = 0, 

17-2 
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subject to the boundary condition 

v2 1P o = o  o n z = 0 , 1 ,  (4.3) 

PL = 0 on z = 0,1,  (4.4) 

p: = p! = 0 on r = ro. (4.5) 

(See top of page 7 of A as well as (3.13'), (5.1 1) and (5.12) of that paper with the forcing 
terms equal to zero and uT = uB = 0.) By virtue of the thermal-wind relation the 
no-heat-flux wall condition is also satisfied to lowest order. Equations (4.2)-(4.5) when 
supplemented by the pressure distribution at infinity, namely (2.5), are sufficient 
for determining the lowest-order interior motion. It is convenient to introduce the 
pressure deviation 

q=pO+[u+b(z-~)] (": - ") sin e, 

in terms of which the problem becomes 

V'Q = 0, (4.7) 

q =  Q = 0 on z = 0 , l  and as r-tco,  (4.8) 

q = O  o n r = r o ,  (4.9) 

9,. = 2ro[a+b(z-+)] sin0 on r = ro. 

The desired solution for Q is 
m 

Q = sin 8 Z A, sin (nnz) Kl(rn), r ,  = nnr, 
n-i 

(4.10) 

(4.11) 

where A, are arbitrary constants. The solution for q satisfying all but the wall 
conditionst is 

where B, are arbitrary constants. The constants A, and B, are determined by 
imposing on Q, the wall conditions (4.9) and (4.10), and we obtain the final result for 

m 

n-1 
+ (aS)+ sine Z (;y [ ( u - 3 )  (1  + (- l)"")+b( - l),+l] 

where rOn = nnro. 
The first part of the solution$ (4.13) is a potential flow with harmonic horizontal 

motion. It is independent of the stratification parameter and it satisfies the equation 

t It is shown in A that a vertical boundary layer of width Zd without substructure can exist 
when US = O(1). However, it is eliminated in the case of the no-heat-flux wall condition. 

$ Equation (4.13) is not singular at aS = 1. The appropriate expression is evaluated by applying 
the limit US+ 1 to (4.13). 
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FIQURE 4. The vertical structure of the horizontal velocity components at different radial locations 
for  US)^ = 10 and ro = 4. The oncoming flow possesses no vertical shear, i.e. a = 1 ,  b = 0. (a)  The 
radial velocity (the cos 0 term extracted). (b)  The azimuthal velocity (the sin 0 term extracted). 

and the boundary conditions, leaving out the no-slip condition for the azimuthal 
velocity and the associated no-heat flux constraint. These are satisfied by including 
the second part of the solution, which is stratification-dependent and confined to the 
vicinity of the cylinder. From the asymptotic properties of modified Bessel functions 
it follows that the degree of penetration of the stratification effects from the vertical 
wall into the interior depends, for a given u, on the ratio of the cylinder radius to 
the radius of deformation (aATgD/4Qa$ and is equal to the larger of the two. 

Figures 4 and 5 illustrate two particular solutions corresponding to r,, = 0.5 and 
(a8y = 10. Thus the fluid is heavily stratified and the diameter of the cylinder is equal 
to the depth of the fluid. Similar qualitative results are obtained for other values of 
the parameters. We consider first the case of a = 1 and b = 0, corresponding to a 
velocity profile possessing no vertical shear at infinity. Figure 4 depicts the vertical 
structure of the azimuthal and radial velocity components at several radial locations. 
The profiles are symmetric about z = t .  No flow reversal occurs, and this is consistent 
with the results obtained in 93 for the same velocity profile at infinity. The striking 
feature, however, is that the azimuthal velocity develops strong vertical shear in the 
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FIGURE 5. The same as in figure 4, but for an oncoming flow that vanishes on z = 0 and 
possesses a unit vertical shear, i.e. a = +, b = 1. 

vicinity of ro and z = 0 , l .  Figure 5 depicts the same velocity profiles, but for a = f, 
b = 1, i.e. for a linear velocity profile at infinity that vanishes on z = 0 and possesses 
a unit vertical shear. The results are no longer symmetric about z = f. Contrary to 
the results of $3, no flow reversal is observed next to the cylinder in the vicinity of 
z = 0. Ekman suction, which in $3 is responsible for the existence of the reversed-flow 
region, is eliminated here on account of the strong stratification. Similarly to figure 4, 
the azimuthal velocity develops strong vertical shear in the vicinity of the cylinder. 
This shear is confined, however, to the vicinity of z = 1 only. 

The strong shear of the azimuthal velocity in the corner region results from the 
failure of this velocity component to satisfy the no-slip condition there. The pressure 
distribution on z = 0 , l  is derived from the solution of the harmonic equation (4.3), 
and as such it can only satisfy the wall condition for the radial velocity component. 
Consequently a discontinuity in the interior azimuthal velocity develops at the corner 
for all velocity profiles that do not vanish at infinity on z = 0 , l .  The dimensions of 
the corner region in the radial and vertical directions are If3 x If3, and the lowest-order 
interior pressure distribution obtained from the solution of (4.3) is valid outside an 
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O(B) lateral distance from the cylinder. (The lowest-order interior pressure distrib- 
ution is valid all the way to the vertical wall for all 0 < z < 1 independently of the 
conditions at  infinity as shown in A.) If the velocity profile at infinity vanishes on 
the horizontal boundary surfaces the corresponding Ekman layers disappear and the 
lowest-order corner region is eliminated. For a linear velocity profile at infinity this 
is possible on one horizontal surface at the most. Consequently one corner region 
always exists. 

The failure of the 0(1) interior velocity to satisfy the no-slip boundary condition 
at one point is significant dynamically only if the removal of the discontinuity 
introduces O(1) effects that are not local. When that occurs the interior flow cannot 
be fully determined unless the detailed structure of the corner region is considered. 
In  contained flows it is possible to bypass this difficult issue by applying global 
conservation principles to the integrated mass flux (Greenspan 1968). Since the 
solution (4.13) is completely determined, it is not clear what additional information 
could emerge from such a procedure if it  were possible to apply it usefully to our 
external-flow problem. The solution (4.13) may not be valid globally if the lowest-order 
vertical boundary layer, whose width is O(&), must not vanish and hence can absorb 
an O(B) vertical mass flux from the non-trivial Ekman layer. This implies, however, 
a corresponding O(1) vertical velocity in this layer, which is not possible on 
account of the no-heat-flux wall condition. 

A single equation can be derived for the pressure (Greenspan 1968), and in our 
notation it assumes the form 

In the corner region it reduces to 

where p = ( r  - r o ) / B  and 5 = z/B or (1 - z)/B. No attempt is made here to solve this 
equation, but one of the requirements of its solution is that it must turn sideways 
the O ( B )  radial flux impinging on the corner region from the non-trivial Ekman layer. 
(This necessitates a strong tangential jet in the corner region.) If this cannot be 
achieved, then the assumptions relating to the uniformity of weak nonlinear effects 
or steadiness may have to be relinquished.? The rest of this section is devoted to 
interior velocity profiles that vanish on z = 0,1, thus avoiding the difficult issue raised 
above. 

The linear pressure distribution (2.5) provides an exact geostrophic balance to all 
orders of the interior flow at infinity. Such a balance does not always exist in 
geophysical or engineering flows, and it is of interest to understand how slight 
deviations from exact geotrophy of the interior pressure distribution at infinity affect 
the flow response. In  other words, we are interested in velocity profiles at infinity 
that are not necessarily linear functions of the vertical coordinate. We have carried 
out such an analysis for the parameter range of $3.0(@) deviations were introduced, 
and the results revealed again the existence of flow-reversal regions. In  the rest of 
this section we shall consider the effect of O(E)  deviations when US = O(1). 

t It would be useful if the theory presented here could be verified using the laboratory apparatus 
described by Boyer, Davies & Biolley (1984). 
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We now consider pressure distributions at  infinity that are given by 

I po  = - U ( z ) y  asr+co, 

U(z)  = U,,(z) = 0 on z = 0 , l .  
(4.14) 

The constraint on Uis necessary for the interior solution to satisfy the Ekman-suction 
condition (4.3) by virtue of triviality, even far horizontal pressure distributions that 
are not harmonic in the vicinity of the horizontal boundaries. The constraint on U,, 
is necessary for consistency with the no-heat-flux condition (4.4). 

It is important to realize that an imposed O ( E )  deviation from geostrophy requires 
the existence of externally imposed potential-vorticity sources, otherwise the steadi- 
ness assumption is violated. The cause of the existence of such sources can be solar 
radiation in the atmosphere and applied wind stress in the oceans. Thus if, for 
example, we augment the temperature equation (2.3) by a weak radiation source 
!$h(z) y and follow the expansion of A we find that the leading-order interior motion 
is governed by (4.2) augmented on the right-hand side by the aource divergence 
( -  l/aS) y dhldz. No sources are required for the pressure distribution (2.5), but for 
the more general profile (4.14) the appropriate extension of (4.2) is 

r sin 8 d4 U 
PO=--- 

U# dz4 '  
(4.15) 

(4.16) 
We define tp by 

P = PO+ U ( 4 Y  

and find that it is governed by the earlier equation and boundary conditions with 
U(z )  replacing a+b(z-+). 

Let pn denote the solution corresponding to U(z )  = sin ( n m )  ; then 

(4.17) 

The wall shear stress is given by 

lz*n2ro 
= sin 8 sin (nnz) { - ua ko(ron)Ki(%) 

and for nro 9 max (1, (u#)t) we can use the asymptotic properties of modified Bessel 
functions for large arguments to find that 

(1 + (aS)i) sin (nxz) 
15nn 

N -  sin (nm) + - 
8(crS)i 
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It then follows that for a general velocity profile 
00 

U(z)  = Z C ,  sin(nxz), 
n-1 

which satisfies the constraints (4.14), 
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(4.20) 

1 03 El - m [ r o U , , - ~ x ( l + ( ~ ~ ) ~ )  1 Z nC,ain(nxz) sin8. (4.21) 

ar r-ro n-1 

For sufficiently large r,, (4.21) can be further approximated as 

(4.22) 

thus revealing the striking result that, under the constraint leading to (4.22), velocity 
profiles satisfying U(z)  2 0 develop reversed-circulation regions next to the cylinder 
in those vertical regions for which U,, > 0. (Positive wall shear stress implies reverse 
circulation, since the flow at infinity is directed along the positive z-direction.) The 
lateral extent of the flow-reversal region can be comparable to the dimensions of the 
cylinder, as our particular examples will show. It should be emphasized that the 
existence of flow-reversal regions does not depend on the conditions leading to (4.21) 
or (4.22). These expressions serve to demonstrate the point visually. In  more general 
cases the possible existence of the flow-reversal regions should be determined from 
the general solution. 

A very simple example is provided by the velocity profile 

U(z )  = sin3 ( x z )  = f sin ( x z ) - a  sin (3xz), (4.23) 

for which (4.21) reduces to 

I +[3+- 15 (1 + (~YS):)]  sin (3x2) sine. (4.24) 
8nr0 

Figure 6 depicts the wall shear stress as a function of z for a wide range of the 
parameters ro and (t~S)t not necessarily consistent with the above asymptotic 
estimates. The results are symmetric about z = t .  All cases demonstrate the existence 
of two flow-reversal regions next to the cylinder and in the vicinity of the horizontal 
boundary surfaces at z = 0 and 1. The physical explanation of the features of figure 6 
is similar to the one given in 43. The heat flux induced at the wall by U(z )  is 
parameter-independent and must be counteracted by the wall heat flux of the flow 
field induced by the cylinder. Consider the range 0 G z G t ,  0 < 0 G x, for example. 
Next to z = 0, U is small and U, > 0, and from the thermal-wind relation it follows 
that the induced temperature gradient must be negative. This temperature gradient 
decays away from the wall, implying positive qr and v:, at the wall. This is the reason 
for the existence of the flow-reversal region. When the radius of deformation is less 
than the geometric scale, v:, increases inversely proportional to (VS)~, as observed 
in figure 6 and indicated by (4.24). This explains the increase in the vertical extent 
of the flow-reversal region, which can occupy, in our example, more than half of the 
depth of the fluid. For the same reason the lateral extent of the flow-reversal region 
decreases with (vS)~. 

The existence of counterflow next to the cylinder implies the existence of a domain 
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FIGURE 6. The vertical distribution of the wall shear stress (the sin8 term extracted) for an 
oncoming flow given by sina (xz ) .  The dashed line corresponds to the asymptotic estimate (4.31). 
Positive shear indicates backflow next to the cylinder. 

containing the reversed-flow region that is not accessible to fluid particles coming 
from infinity. The boundary of this axisymmetric domain is determined by 
po(z ,  r )  = 0. It follows from the arguments just presented that the lateral extent of 
this domain increases with stratification. At z = 0.15, corresponding approximately 
to the region of maximum positive shear according to figure 6, we find that, for 
ro = 0.5, po  = 0 extends to 2.7r0 and 1.76r0 for (a&'): = 10 and 0.5 respectively. For 
ro = 0.05 and (c~h')t = 0.5 it extends to 4.4r0, and for r0 = 5 and (a&'); = 10 it extends 
to 1.45,. (Recall that ro is measured in units of depth.) Figure 6 indicates that 
increasing ro is qualitatively equivalent to decreasing (ah'):. This is so because of the 
combination r,/(cTS)f that appears in the solution, and in particular in the asymptotic 
expression (4.19). Hence there is no need to interpret the results in terms of placing 
cylinders of various radii in a fluid with a given stratification. For the purpose of 
illustration, we show in figure 7 the radial dependence of the pressure, the azimuthal 
velocity vo and the radial velocity uo at z = 0.15 and 0.5 for r, = 5 and (~8): = 10. 
In  view of the above discussion, the features of this figure are self-explanatory. 

5. Discussion 
We have considered linear stratified rotating flows, but it is important to study 

how the existence of backflow regions next to the cylinder is modified by nonlinear 
effects. Since the linear solution is uniformly valid, we expect that small nonlinear 
effects will alter the results in a continuous way. Guided by the results of Brevdo 
& Merkine (1985) for the two-layer model, we speculate that, as nonlinearity increases, 
a favourable pressure gradient will develop next to the forward stagnation point, and 
it will push the backflow region downstream. At the same time an adverse pressure 



Rotating strati$ed $ow past a cylinder on an f-plane 

3 .  

2 .  

517 

rh.0 

FIQURE 7. The radial structure of the pressure (the sin 8 term extracted), the azimuthal velocity 
(the sin8 term extracted) and the radial velocity (the cos8 term extracted) a t  z = 0.15 (a) and at 
z = 0.5 (a) for r, = 6, (uls)i = 10 and an oncoming flow given by sina ( x z ) .  Positive 8 corresponds 
to backdow. At z = 0.15 the radial extent of the domain not accessible to duid particles coming 
from infinity is given by 0 Q r S l.45r0. 
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gradient will develop downstream, which, if strong enough, will cause separation at 
the rear stagnation point. The streamwise extent of the backflow region will diminish 
as nonlinearity increases, and finally it will be eliminated when the Rossby number 
becomes comparable to I& for US = O(B) or to E for aS = O(1). 

The solution of the nonlinear problem requires a separate study. It is not difficult 
to show, however, that when as = O ( B )  and whene = O(B) the interior solution (3.6) 
is still valid whereas the nonlinear boundary layer is governed by 

subject to the boundary conditions 

@ = @  c = O  on,u=O, 

B 
S 

@, = -2[a+b(z-+)] sine, @,,+-@zz = 0 asp+oO, 

where the notation of $3 is used. 

This research has been sponsored in part by the Air Force Office of Scientific 
Research, under Grant AFOSR-83-0069. 
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